Section III-F. Exempt Experiments

The following recombinant or synthetic nucleic acid molecules are exempt from the *NIH Guidelines* and registration with the Institutional Biosafety Committee is not required; however, other federal and state standards of biosafety may still apply to such research (for example, the Centers for Disease Control and Prevention (CDC)/NIH publication Biosafety in Microbiological and Biomedical Laboratories).

Section III-F-1. Those synthetic nucleic acids that: (1) can neither replicate nor generate nucleic acids that can replicate in any living cell (e.g., oligonucleotides or other synthetic nucleic acids that do not contain an origin of replication or contain elements known to interact with either DNA or RNA polymerase), and (2) are not designed to integrate into DNA, and (3) do not produce a toxin that is lethal for vertebrates at an LD50 of less than 100 nanograms per kilogram body weight. If a synthetic nucleic acid is deliberately transferred into one or more human research participants and meets the criteria of Section III-C, it is not exempt under this Section.

Section III-F-2. Those that are not in organisms, cells, or viruses and that have not been modified or manipulated (e.g., encapsulated into synthetic or natural vehicles) to render them capable of penetrating cellular membranes.

Section III-F-3. Those that consist solely of the exact recombinant or synthetic nucleic acid sequence from a single source that exists contemporaneously in nature.

Section III-F-4. Those that consist entirely of nucleic acids from a prokaryotic host, including its indigenous plasmids or viruses when propagated only in that host (or a closely related strain of the same species), or when transferred to another host by well established physiological means.

Section III-F-5. Those that consist entirely of nucleic acids from a eukaryotic host including its chloroplasts, mitochondria, or plasmids (but excluding viruses) when propagated only in that host (or a closely related strain of the same species).

Section III-F-6. Those that consist entirely of DNA segments from different species that exchange DNA by known physiological processes, though one or more of the segments may be a synthetic equivalent. A list of such exchangers will be prepared and periodically revised by the NIH Director with advice of the RAC after appropriate notice and opportunity for public comment (see Section IV-C-1-b-(1)-(c), *Major Actions*). See Appendices A-I through A-VI, *Exemptions under Section III-F-6--Sublists of Natural Exchangers*, for a list of

natural exchangers that are exempt from the NIH Guidelines.

Section III-F-7. Those genomic DNA molecules that have acquired a transposable element, provided the transposable element does not contain any recombinant and/or synthetic DNA.

Section III-F-8. Those that do not present a significant risk to health or the environment (see Section IV-C-1-b-(1)-(c), *Major Actions*), as determined by the NIH Director, with the advice of the RAC, and following appropriate notice and opportunity for public comment. See Appendix C, *Exemptions under Section III-F-8* for other classes of experiments which are exempt from the *NIH Guidelines*.

APPENDIX A. EXEMPTIONS UNDER SECTION III-F-6--SUBLISTS OF NATURAL EXCHANGERS

Certain specified recombinant or synthetic nucleic acid molecules that consist entirely of DNA segments from different species that exchange DNA by known physiological processes, though one or more of the segments may be a synthetic equivalent are exempt from these NIH Guidelines (see Section III-F-6, Exempt Experiments). Institutional Biosafety Committee registration is not required for these exempt experiments. A list of such exchangers will be prepared and periodically revised by the NIH Director with advice from the RAC after appropriate notice and opportunity for public comment (see Section IV-C-1-b-(1)-(c), NIH Director--Specific Responsibilities). For a list of natural exchangers that are exempt from the NIH Guidelines, see Appendices A-I through A-VI, Exemptions under Section III-F-6 Sublists of Natural Exchangers. Section III-F-6, Exempt Experiments, describes recombinant or synthetic nucleic acid molecules that are: (1) composed entirely of DNA segments from one or more of the organisms within a sublist, and (2) to be propagated in any of the organisms within a sublist (see Classification of Bergey's Manual of Determinative Bacteriology, 8th edition, R. E. Buchanan and N. E. Gibbons, editors, Williams and Wilkins Company; Baltimore, Maryland 1984). Although these experiments are exempt, it is recommended that they be performed at the appropriate biosafety level for the host or recombinant/synthetic organism (see Biosafety in Microbiological and Biomedical Laboratories, 5th edition, 2007, U.S. DHHS, Public Health Service, Centers for Disease Control and Prevention, Atlanta, Georgia, and NIH Office of Biosafety, Bethesda, Maryland).

Appendix A-I. Sublist A

Genus Escherichia

Genus Shigella

Genus Salmonella - including Arizona

Genus Enterobacter

Genus Citrobacter - including Levinea

Genus Klebsiella - including oxytoca

Genus Erwinia

Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas fluorescens, and Pseudomonas mendocina

Serratia marcescens

Yersinia enterocolitica

Appendix A-II. Sublist B

Bacillus subtilis

Bacillus licheniformis

Bacillus pumilus

Bacillus globigii

Bacillus niger

Bacillus nato

Bacillus amyloliquefaciens

Bacillus aterrimus

Appendix A-III. Sublist C

Streptomyces aureofaciens Streptomyces rimosus

Streptomyces coelicolor

Appendix A-IV. Sublist D

Streptomyces griseus Streptomyces cyaneus

Streptomyces venezuelae

Appendix A-V. Sublist E

One way transfer of Streptococcus mutans or Streptococcus lactis DNA into Streptococcus sanguis

Page 39 - NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules

Appendix A-VI. Sublist F

Streptococcus sanguis
Streptococcus pneumoniae
Streptococcus faecalis
Streptococcus pyogenes
Streptococcus mutans

(March 2013)

APPENDIX C. EXEMPTIONS UNDER SECTION III-F-8

Section III-F-8 states that exempt from these NIH Guidelines are "those that do not present a significant risk to health or the environment (see Section IV-C-1-b-(1)-(c), NIH Director--Specific Responsibilities), as determined by the NIH Director, with the advice of the RAC, and following appropriate notice and opportunity for public comment. See Appendix C, Exemptions under Sections III-F-8, for other classes of experiments which are exempt from the NIH Guidelines." The following classes of experiments are exempt under Section III-F-8:

Appendix C-I. Recombinant or Synthetic Nucleic Acid Molecules in Tissue Culture

Recombinant or synthetic nucleic acid molecules containing less than one-half of any eukaryotic viral genome (all viruses from a single family being considered identical -- see Appendix C-VIII-E, Footnotes and References of Appendix C), that are propagated and maintained in cells in tissue culture are exempt from these NIH Guidelines with the exceptions listed in Appendix C-I-A.

Appendix C-I-A. Exceptions

The following categories are not exempt from the *NIH Guidelines*: (i) experiments described in Section III-B which require NIH/OBA and Institutional Biosafety Committee approval before initiation, (ii) experiments involving DNA from Risk Groups 3, 4, or restricted organisms (see Appendix B, Classification of Human Etiologic Agents on the Basis of Hazard, and Sections V-G and V-L, Footnotes and References of Sections I through IV) or cells known to be infected with these agents, (iii) experiments involving the deliberate introduction of genes coding for the biosynthesis of molecules that are toxic for vertebrates (see Appendix F, Containment Conditions for Cloning of Genes Coding for the Biosynthesis of Molecules Toxic for Vertebrates), and (iv) whole plants regenerated from plant cells and tissue cultures are covered by the exemption provided they remain axenic cultures even though they differentiate into embryonic tissue and regenerate into plantlets.

Appendix C-II. Escherichia coli K-12 Host-Vector Systems

Experiments which use *Escherichia coli* K-12 host-vector systems, with the exception of those experiments listed in Appendix C-II-A, are exempt from the *NIH Guidelines* provided that: (i) the *Escherichia coli* host does not contain conjugation proficient plasmids or generalized transducing phages; or (ii) lambda or lambdoid or Ff bacteriophages or non-conjugative plasmids (see Appendix C-VIII-B, *Footnotes and References of Appendix C*) shall be used as vectors. However, experiments involving the insertion into *Escherichia coli* K-12 of DNA from

prokaryotes that exchange genetic information (see Appendix C-VIII-C, Footnotes and References of Appendix C) with Escherichia coli may be performed with any Escherichia coli K-12 vector (e.g., conjugative plasmid). When a non-conjugative vector is used, the Escherichia coli K-12 host may contain conjugation-proficient plasmids either autonomous or integrated, or generalized transducing phages. For these exempt laboratory experiments, Biosafety Level (BL) 1 physical containment conditions are recommended. For large-scale fermentation experiments, the appropriate physical containment conditions need be no greater than those for the host organism unmodified by recombinant or synthetic nucleic acid molecule techniques; the Institutional Biosafety Committee can specify higher containment if deemed necessary.

Appendix C-II-A. Exceptions

The following categories are not exempt from the *NIH Guidelines*: (i) experiments described in Section III-B which require NIH/OBA and Institutional Biosafety Committee approval before initiation, (ii) experiments involving DNA from Risk Groups 3, 4, or restricted organisms (see Appendix B, Classification of Human

Etiologic Agents on the Basis of Hazard, and Sections V-G and V-L, Footnotes and References of Sections I through IV) or cells known to be infected with these agents may be conducted under containment conditions specified in Section III-D-2 with prior Institutional Biosafety Committee review and approval, (iii) large-scale experiments (e.g., more than 10 liters of culture), and (iv) experiments involving the cloning of toxin molecule genes coding for the biosynthesis of molecules toxic for vertebrates (see Appendix F, Containment Conditions for Cloning of Genes Coding for the Biosynthesis of Molecules Toxic for Vertebrates).

Appendix C-III. Saccharomyces Host-Vector Systems

Experiments involving *Saccharomyces cerevisiae* and *Saccharomyces uvarum* host-vector systems, with the exception of experiments listed in Appendix C-III-A, are exempt from the *NIH Guidelines*. For these exempt experiments, BL1 physical containment is recommended. For large-scale fermentation experiments, the appropriate physical containment conditions need be no greater than those for the unmodified host organism; the Institutional Biosafety Committee can specify higher containment if deemed necessary.

Appendix C-III-A. Exceptions

The following categories are not exempt from the *NIH Guidelines*: (i) experiments described in Section III-B which require NIH/OBA and Institutional Biosafety Committee approval before initiation, (ii) experiments involving DNA from Risk Groups 3, 4, or restricted organisms (see Appendix B, Classification of Human Etiologic Agents on the Basis of Hazard, and Sections V-G and V-L, Footnotes and References of Sections I through IV) or cells known to be infected with these agents may be conducted under containment conditions specified in Section III-D-2 with prior Institutional Biosafety Committee review and approval, (iii) large-scale experiments (e.g., more than 10 liters of culture), and (iv) experiments involving the deliberate cloning of genes coding for the biosynthesis of molecules toxic for vertebrates (see Appendix F, Containment Conditions for Cloning of Genes Coding for the Biosynthesis of Molecules Toxic for Vertebrates).

Appendix C-IV. Kluyveromyces Host-Vector Systems

Experiments involving *Kluyveromyces lactis* host-vector systems, with the exception of experiments listed in Appendix C-IV-A, are exempt from the *NIH Guidelines* provided laboratory-adapted strains are used (i.e. strains that have been adapted to growth under optimal or defined laboratory conditions). For these exempt experiments, BL1 physical containment is recommended. For large-scale fermentation experiments, the appropriate physical containment conditions need be no greater than those for the unmodified host organism; the Institutional Biosafety Committee may specify higher containment if deemed necessary.

Appendix C-IV-A Exceptions

The following categories are not exempt from the *NIH Guidelines*: (i) experiments described in Section III-B, which require NIH/OBA and Institutional Biosafety Committee approval before initiation; (ii) experiments involving DNA from Risk Groups 3, 4, or restricted organisms (see Appendix B, Classification of Human Etiologic Agents on the Basis of Hazard, and Sections V-G and V-L, Footnotes and References of Sections I through IV) or cells known to be infected with these agents may be conducted under containment conditions specified in Section III-D-2 with prior Institutional Biosafety Committee review and approval; (iii) large-scale experiments (e.g., more than 10 liters of culture), and (v) experiments involving the deliberate cloning of genes

coding for the biosynthesis of molecules toxic for vertebrates (see Appendix F, Containment Conditions for Cloning of Genes Coding for the Biosynthesis of Molecules Toxic for Vertebrates).

Appendix C-V. Bacillus subtilis or Bacillus licheniformis Host-Vector Systems

Any asporogenic *Bacillus subtilis* or asporogenic *Bacillus licheniformis* strain which does not revert to a spore-former with a frequency greater than 10⁻⁷ may be used for cloning DNA with the exception of those experiments listed in Appendix C-V-A, *Exceptions*. For these exempt laboratory experiments, BL1 physical containment conditions are recommended. For large-scale fermentation experiments, the appropriate physical containment conditions need be no greater than those for the unmodified host organism; the Institutional Biosafety Committee can specify higher containment if it deems necessary.

Appendix C-V-A. Exceptions

The following categories are not exempt from the *NIH Guidelines*: (i) experiments described in Section III-B which require NIH/OBA and Institutional Biosafety Committee approval before initiation, (ii) experiments involving DNA from Risk Groups 3, 4, or restricted organisms (see Appendix B, *Classification of Human Etiologic Agents on the Basis of Hazard*, and Sections V-G and V-L, *Footnotes and References of Sections I through IV*) or cells known to be infected with these agents may be conducted under containment conditions specified in Section III-D-2 with prior Institutional Biosafety Committee review and approval, (iii) large-scale experiments (e.g., more than 10 liters of culture), and (iv) experiments involving the deliberate cloning of genes coding for the biosynthesis of molecules toxic for vertebrates (see Appendix F, *Containment Conditions for Cloning of Genes Coding for the Biosynthesis of Molecules Toxic for Vertebrates*).

Appendix C-VI. Extrachromosomal Elements of Gram Positive Organisms

Recombinant or synthetic nucleic acid molecules derived entirely from extrachromosomal elements of the organisms listed below (including shuttle vectors constructed from vectors described in Appendix C), propagated and maintained in organisms listed below are exempt from these *NIH Guidelines*.

Bacillus amyloliquefaciens

Bacillus amylosacchariticus

Bacillus anthracis

Bacillus aterrimus

Bacillus brevis

Bacillus cereus

Bacillus alobiaii

Bacillus licheniformis

Bacillus megaterium

Bacillus natto

Bacillus niger

Bacillus pumilus

Bacillus sphaericus

Bacillus stearothermophilis

Bacillus subtilis

Bacillus thuringiensis

Clostridium acetobutylicum

Lactobacillus casei

Listeria grayi

Listeria monocytogenes

Listeria murravi

Pediococcus acidilactici

Pediococcus damnosus

Pediococcus pentosaceus

Staphylococcus aureus

Staphylococcus carnosus

Staphylococcus epidermidis

Streptococcus agalactiae

Streptococcus anginosus

Streptococcus avium

Streptococcus cremoris

Streptococcus dorans

Streptococcus equisimilis

Streptococcus faecalis

Streptococcus ferus

Streptococcus lactis

Streptococcus ferns

Streptococcus mitior

Streptococcus mutans

Streptococcus pneumoniae

Streptococcus pyogenes

Streptococcus salivarious

Streptococcus sanguis

Streptococcus sobrinus

Streptococcus thermophylus

Appendix C-VI-A. Exceptions

The following categories are not exempt from the *NIH Guidelines*: (i) experiments described in Section III-B which require NIH/OBA and Institutional Biosafety Committee approval before initiation, (ii) experiments involving DNA from Risk Groups 3, 4, or restricted organisms (see Appendix B, Classification of Human Etiologic Agents on the Basis of Hazard, and Sections V-G and V-L, Footnotes and References of Sections I through IV) or cells known to be infected with these agents may be conducted under containment conditions specified in Section III-D-2 with prior Institutional Biosafety Committee review and approval, (iii) large-scale experiments (e.g., more than 10 liters of culture), and (iv) experiments involving the deliberate cloning of genes coding for the biosynthesis of molecules toxic for vertebrates (see Appendix F, Containment Conditions for Cloning of Genes Coding for the Biosynthesis of Molecules Toxic for Vertebrates).

Appendix C-VII. The Purchase or Transfer of Transgenic Rodents

The purchase or transfer of transgenic rodents for experiments that require BL1 containment (See Appendix G-III-M, Footnotes and References of Appendix G) are exempt from the NIH Guidelines.

Appendix C-VIII. Generation of BL1 Transgenic Rodents via Breeding

The breeding of two different transgenic rodents or the breeding of a transgenic rodent and a non-transgenic rodent with the intent of creating a new strain of transgenic rodent that can be housed at BL1 containment will be exempt from the *NIH Guidelines* if:

- (1) Both parental rodents can be housed under BL1 containment; and
- (2) neither parental transgenic rodent contains the following genetic modifications: (i) incorporation of more than one-half of the genome of an exogenous eukaryotic virus from a single family of viruses; or (ii) incorporation of a transgene that is under the control of a gammaretroviral long terminal repeat (LTR); and
- (3) the transgenic rodent that results from this breeding is not expected to contain more than one-half of an exogenous viral genome from a single family of viruses.

Appendix C-IX. Footnotes and References of Appendix C

Appendix C-IX-A. The NIH Director, with advice of the RAC, may revise the classification for the purposes of these *NIH Guidelines* (see Section IV-C-1-b-(2)-(b), *Minor Actions*). The revised list of organisms in each Risk Group is located in Appendix B.

Appendix C-IX-B. A subset of non-conjugative plasmid vectors are poorly mobilizable (e.g., pBR322, pBR313). Where practical, these vectors should be employed.

Appendix C-IX-C. Defined as observable under optimal laboratory conditions by transformation, transduction, phage infection, and/or conjugation with transfer of phage, plasmid, and/or chromosomal genetic information. Note that this definition of exchange may be less stringent than that applied to exempt organisms under Section

III-F-6, Exempt Experiments.

decules (March 2013)

Appendix C-IX-D. As classified in the *Third Report of the International Committee on Taxonomy of Viruses:* Classification and Nomenclature of Viruses, R. E. F. Matthews (ed.), Intervirology 12 (129-296), 1979.

Appendix C-IX-E. i.e., the total of all genomes within a Family shall not exceed one-half of the genome.

APPENDIX E. CERTIFIED HOST-VECTOR SYSTEMS (See Appendix I, Biological Containment)

While many experiments using *Escherichia coli* K-12, *Saccharomyces cerevisiae*, and *Bacillus subtilis* are currently exempt from the *NIH Guidelines* under *Section III-F*, *Exempt Experiments*, some derivatives of these host-vector systems were previously classified as Host-Vector 1 Systems or Host-Vector 2 Systems. A listing of those systems follows:

Appendix E-I. Bacillus subtilis

Appendix E-I-A. Bacillus subtilis Host-Vector 1 Systems

The following plasmids are accepted as the vector components of certified *B. subtilis* systems: pUB110, pC194, pS194, pSA2100, pE194, pT127, pUB112, pC221, pC223, and pAB124. *B. subtilis* strains RUB 331 and BGSC 1S53 have been certified as the host component of Host-Vector 1 systems based on these plasmids.

Appendix E-I-B. Bacillus subtilis Host-Vector 2 Systems

The asporogenic mutant derivative of *Bacillus subtilis*, ASB 298, with the following plasmids as the vector component: pUB110, pC194, pS194, pSA2100, pE194, pT127, pUB112, pC221, pC223, and pAB124.

Appendix E-II. Saccharomyces cerevisiae

Appendix E-II-A. Saccharomyces cerevisiae Host-Vector 2 Systems

The following sterile strains of *Saccharomyces cerevisiae*, all of which have the ste-VC9 mutation, SHY1, SHY2, SHY3, and SHY4. The following plasmids are certified for use: Ylp1, YEp2, YEp4, Ylp5, YEp6, YRp7, YEp20, YEp21, YEp24, Ylp25, Ylp26, Ylp27, Ylp28, Ylp29, Ylp30, Ylp31, Ylp32, and Ylp33.

Appendix E-III. Escherichia coli

Appendix E-III-A. Escherichia coli (EK2) Plasmid Systems

The *Escherichia coli* K-12 strain chi-1776. The following plasmids are certified for use: pSC101, pMB9, pBR313, pBR322, pDH24, pBR325, pBR327, pGL101, and pHB1. The following *Escherichia colii*/S. cerevisiae hybrid plasmids are certified as EK2 vectors when used in *Escherichia coli* chi-1776 or in the sterile yeast strains, SHY1, SHY2, SHY3, and SHY4: YIpI, YEp2, YEp4, YIp5, YEp6, YRp7, YEp20, YEp21, YEP24, YIp25, YIp26, YIp27, YIp28, YIp29, YIp30, YIp31, YIp32, and YIp33.

Appendix E-III-B. Escherichia coli (EK2) Bacteriophage Systems

The following are certified EK2 systems based on bacteriophage lambda:

Vector	Host
λgt <i>WES</i> λΒ'	DP50supF
λgt WESλB*	DP50supF
λgt ZJ virλΒ'	Escherichia coli K-12
λgtALO·λB	DP50supF
Charon 3A	DP50 or DP50supF
Charon 4A	DP50 or DP50supF
Charon 16A	DP50 or DP50supF
Charon 21A	DP50supF
Charon 23A	DP50 or DP50supF
Charon 24A	DP50 or DP50supF

Escherichia coli K-12 strains chi-2447 and chi-2281 are certified for use with lambda vectors that are certified for use with strain DP50 or DP50*sup*F provided that the *su*-strain not be used as a propagation host.

Appendix E-IV. Neurospora crassa

Appendix E-IV-A. Neurospora crassa Host-Vector 1 Systems

The following specified strains of *Neurospora crassa* which have been modified to prevent aerial dispersion:

In1 (inositol-less) strains 37102, 37401, 46316, 64001, and 89601. Csp-1 strain UCLA37 and csp-2 strains FS 590, UCLA101 (these are conidial separation mutants).

Eas strain UCLA191 (an "easily wettable" mutant).

Appendix E-V. Streptomyces

Appendix E-V-A. Streptomyces Host-Vector 1 Systems

The following *Streptomyces* species: *Streptomyces coelicolor, S. lividans, S. parvulus*, and *S. griseus*. The following are accepted as vector components of certified *Streptomyces* Host-Vector 1 systems: *Streptomyces* plasmids SCP2, SLP1.2, pIJ101, actinophage phi C31, and their derivatives.

Appendix E-VI. Pseudomonas putida

Appendix E-VI-A. Pseudomonas putida Host-Vector 1 Systems

Pseudomonas putida strains KT2440 with plasmid vectors pKT262, pKT263, and pKT264.